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S U M M A R Y  
The problem of the scattering of a surface wave in a nonviscous, incompressible fluid of infinite depth by a fully 
submerged, rigid, stationary sphere has been reduced to the solution of an infinite set of linear algebraic equations 
for the expansion coefficients in spherical harmonics of the velocity potential. These equations are easily solved 
numerically, so long as the sphere is not too close to the surface. The approach has been to formulate the problem 
as an integral equation, expand the Green's function, the velocity potential of the incident wave, and the total 
velocity potential in spherical harmonics, impose the boundary condition at the surface of the sphere, and carry out 
the integrations. The scattering cross section has been evaluated numerically and is shown to peak for values of the 
product of radius and wave number somewhat less than unity. Also, the Born approximation to the cross section is 
obtained in closed form. 

1 .  I n t r o d u c t i o n  

The problem of determining the influence of a submerged body on the ambient surface wave 
structure is an old one, going back at least to Thomson [1] and Lamb [2]. But while a great 
deal of effort has been devoted since then to the solution of various special cases and the 
development of a variety of approximation methods (see Refs. [3]-[10] and [24] for an 
incomplete but representative sample), one of the simplest and most important cases - -  the 
modification (i.e., scattering) of a surface wave by a completely submerged, rigid, stationary 
sphere - -  has remained unsolved. 

The present work provides an exact solution to this problem - -  though not in closed form 
- -  for a homogeneous, incompressible, nonviscous fluid of infinite depth and infinite extent. 
The approach is to cast the equation for the velocity potential into the form of an integral 
equation involving the Green's function; an explicit expression for this function was 
obtained long ago in Kochin's [3] pioneering work, rederived independently by John [5], 
and further developed by Wehausen and Laitone [11]. Expansion in spherical harmonics of 
the Green's function and the velocity potentials of the known incident and the unknown 
modified wave permits analytic evaluation of the integrals and leads to an infinite set of 
linear algebraic equations for the unknown expansion coefficients. So long as the spherical 
obstacle is not too close to the surface, only the first few harmonics contribute significantly, 
and the corresponding coefficients are readily found by truncating the expansion. The 
equation of the free surface, which embodies the desired modification of the incident wave, is 
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16 E. P. Gray 

obtained directly from this modified velocity potential. This approach makes it very easy to 
calculate both the total and the partial scattering cross sections of such a submerged sphere. 

The Born approximation to the scattering cross section has been calculated. It can be 
evaluated in closed form as a very simple expression involving modified Bessel functions, 
and is shown to be an excellent approximation to the exact scattering cross section 
whenever the depth of the sphere center exceeds the diameter. The Born approximation is 
used to interpret physically the qualitative features of the dependence of the cross section on 
the two dimensionless parameters: the ratio of the depth of the sphere center to the radius, a, 
and the ratio of a to the surface wavelength. 

The structure of the paper is as follows. In Section 2, the problem is formulated as an 
integral equation with a Green's function kernel. In Section 3, this integral equation is used 
to derive an infinite set of linear algebraic equations for the coefficients in a spherical- 
harmonic expansion of the velocity potential. In Section 4, the scattering cross section and 
the Born approximation are obtained. In Section 5, a version of the Optical Theorem 
relevant to surface-wave scattering is derived. In Section 6, the physical significance of the 
results is discussed. 

2. Formulation of the problem 

Suppose a rigid sphere of radius a is submerged in an unbounded fluid of infinite depth, such 
that its center is at a distance d (> a) below the surface. We use a Cartesian coordinate 
system with its origin at the center of the sphere, with the axes directed such that the fluid 
surface corresponds to the plane z = d. (See Fig. 1) The velocity potential ~(x, y, z, t) is 
specified completely by the incompressible nonviscous fluid equation 

V2q~=O for z < d , r > a ,  (la) 

Irnage sphere p,, =_~,p~~r~achl r e ~z=d 

"7 P' a i 

Submerged sphere 

Figure 1. Geometry of submerged sphere and image sphere. 
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Scattering of a surface wave by a submerged sphere 17 

the free surface b o u n d a r y  condi t ion 

O~ 1 02~ 
- -  = for z = d, ( lb)  
Oz g 0t 2 

where g is the acceleration due to gravity, the "bo t t om"  bounda ry  condi t ion 

aq~ 
- -  -÷ 0 for z ~ - ~ ,  ( lc)  
Oz 

and the bounda ry  condi t ion on the surface of the obstacle, where the normal  derivative of q~ 

must  vanish, 

- -  = 0 for r = (x 2 + y2 4- 22)k _. a. ( ld)  
On 

Suppose  we consider waves having a single frequency o9/21r. Let us define the (complex) 
spatial  par t  q /o f  the velocity potent ial  th rough  the relat ion 

• (x, y, z, t) = Re {~(x, y, z)e-i°"}. (2) 

The  equat ion and bounda ry  condit ions for ~u are given by 

V2~u = 0 for z < d, r > a, (3a) 
O~// (.O 2 
~z - v ~ u  for z = d, where v = , (3b) 

9 

0~u -~ 0 for z ~ - ~ ,  (3c) 
Oz 

and 

a~u = 0 for r = a. (3d) 
t~r 

We solve this equat ion in terms of a Green ' s  function, 

Ill(r) = Illt(r ) 4- 1/4n ~ g/(r')V'G(r, r')" n' d2s ', 
Js 

(4) 

where s is the surface of the spherical obstacle (r = a), r '  is the vector  f rom 0 to P '  (Fig. 1), V' 
denotes  t h e  gradient  with respect to the "pr imed"  variable, n is the unit no rma l  f rom the 
surface into the fluid and ~u~ is the "incident" (i.e., unscat tered) free surface wave of unit 
ampli tude,  which we assume to be p ropaga t ing  in the x-direction, 

~u~ = e v<z-~+~'x. (5) 
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18 E. P. Gray 

In order that the solution to Eq. (4) be identical to that of Eqs. (3a)-(3d), the Green's 
function, G, for a point source at r' must satisfy the equation 

V2G = - 4 n d ( r  - r'), (6a) 

and the same "top" and "bottom" boundary conditions as ~u, namely 

and 

~G 
Oz vG for z d, (6b) 

tgG 
~--~- ~ 0 for z ~ - oo; (6c) 

the boundary condition satisfied by ~ on the surface of the obstacle, Eq. (3d), must be 
imposed separately. 

Wehausen and Laitone [11] have shown that G, as determined by Eqs. (6a)-(6c), has the 
form 

1 1 ~o dk 
G(r, r') = Ir - r'~l + Ir - r"~ + 2v ek~+z ' -2a) j ° (kR)  k - v 

+ 2niveVtZ+Z'-2d)Jo(vR), (7) 

where r = (x, y, z), r' = (x', y', z'), R = [(x - x') 2 + (y - y,)2-]½, r "  = ( x ' ,  y ' ,  2d - z'), which 
is the vector from 0 to P", the reflection of P' in the free surface (see Fig. 1), ~ denotes the 
principal value, and Jo is the Bessel function of order zero. 

3. Calculation of velocity potential 

We now proceed to solve Eq. (4) for the velocity potential. To that end, we expand ~u, ~u i and 
G in spherical harmonics centered at the origin. The expansion coefficients of ~u will be the 
unknown quantities that specify the solution. After imposing the boundary condition at the 
surface of the sphere, Eq. (3d), and carrying out all the integrals in Eq. (4), we shall be left 
with an infinite set of linear equations for the desired coefficients. 

The general solution of the incompressible fluid equation V2~ = 0, expressed in spherical 
coordinates, has the form 

= ~, em(Fm,r" + G m , r - " - l ) P ~ ( c o s  O)cos mq~ (8) 
m , n  

where 

{12 if m = 0  
e,. = otherwise, 

the summation 5-',,.,, denotes 5Zm~= 0 ~,~,. ,  pm is the associated Legendre polynomial, and 
(0, ~0) are the spherical angular coordinates of r with respect to the center of the spherical 
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Scattering of  a surface wave by a submerged sphere 19 

obstacle, and with the z-axis chosen as the polar direction. Imposition of the boundary 
condition O~u/Or = 0 for r = a gives the relationship 

f rt ~a2n+l F 
~ ' "  = \ ~ - 4 Y /  """ 

(8a) 

Imposition of the same boundary condition in Eq. (4) leads to 

Or /,=~ + 1/4n ~t(r') [ ~  G(r, r') d2s ' = O. 
[_ G Y O Y  _ l r = a , r '  = a  

(9) 

Expansion of the incident wave, ~,~, and of the various terms of the Green's function is 
carried out in Appendix A: 

2hive ~('+z'-2a)J0(vR ) = ~ emAm.~P~(cos 0)P~(cos 0') cos m ( ~  - ~ ' ) ,  
m , n , K  

0 0 a )  

f f  dk 2v - - e k ( z + z ' - 2 V ) J o ( k R ) =  Y~ 
k - v  m , n . K  

emBm.KP~(cos 0)P~(cos 0') cos m(~o - ~0'), (10b) 

p m  - -  = ~. e , . C m . .  (cos 0)p.m(cos 0') COS m(~0 -- ~0'), 
Ir - r' l  m, .  

(10c) 

Ir - r"~ - Z emDm.~P~(cos 0)P~'(COS 0') cos m(tp - q~'), 
m , n , K  

(lOd) 

~'i = ~, er.E,..P~'(c°s O) cos m~0, 
r n , n  

oo ct) 

where the summation ~2 denotes Z Z ~2 , 
m , n , r  m = O  n = m  r = m  

(10e) 

2hive-  2va( _ 1 )m (vr)" (vr') ~ 
A,..~ = (n + m)! (lc + m)! ' ( l la)  

2v( -  1) m+"+~+l t? "+~ I 
= (vr)"(vr') ~ ~ [e-Y/~7(y)] , 

Bm"~ (n + m)! (to + m)! cy y= Zvd 

[where ~-(y) is the exponential integral defined by 

(lib) 

~-(y) = - e - '  --dr for y > 0] 
y t 

which can be simplified to 

Bm.K2v(_l)r.+l(vr).(vr,)~ I .+~-1 j! ] 
---- (n + m)! (to + m)! e-2Va~-(2vd) -- Z (2vd)J+~- , 

j=0  
( l lb ')  
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20 E. P. Gray 

r '" ( n - m ) !  for r ' < r ,  (llc) Cmn= f,+l (n+m)! 

and 

1 ( _ ~ ) n ( r ' ~  ~ ( n + x ) !  (lid) 
D.,n~ = 2d k2-d-J (n + m)! (x + m)!' 

im(vr)n e -'d. (lie) 
E"n = (m + n)! 

Due to the orthogonality of the spherical harmonics, Eq. (9) is separately valid for each 
(m, n) term in the spherical harmonic expansion. Thus we have 

dEm.(a) 

~r 

where 

fl t~ Qmn(O, a, a) 
4n dfp' cos m~o' dO' sin O'~u(a, 0', to') ~rar' 

for O<_m<n,  n=O,  1,2 , . . .  

with 

(12) 

cO 

Q,..(O', r, r') = Z (C,..d.~ + amn K "-}- nranK "~ Dmn,~)P~(cos O'), (13) 
K = m  

{~ i f n = x  
8n~ = otherwise. 

Using Eqs. (8) and (8a) for ~u, and carrying out the angular integrations indicated above, 
we find 

CO 

em = ~., fm~ ( x +m) ! ( c , . n 6 .~ +  +b,.n~+dmn~) for 0 < m < n ,  (14) 
~ = m X + l  ( x - - m ) !  a,.n~ _ _ 

where 

a3 82A,~n~ 2hi( - 1)m nx(va)n + ~ + 1 e -  2~a 

amn~ = t~rt~--'----"~lr=r,=a -- (n + m)! (x + m)! 
(15a) 

b,.n~ = a  3 d2B'~n-------~ = 2(-1)m+lnr(va)n+~+l 

Or~r' I,=,'=a (n + m)! (x + m)! 

i n+~-I j! "1 X e-2"dET(2vd) - =Z ° (2vd)J+l , 
j= 

c m = a 3 02C'-----~ = -n(n + 1 ) - -  
OrOr' I,=.'=a 

(n - m)! 

(n + m)!' 

a O2D-,,,~ ] nx(n + x)! ( a y+,~+l 
dm.,~ = a ~ = ~rar [,=,.=o (n + m)! (~ + m)! \ ~ ]  ' 

(15b) 

(15c) 

(15d) 
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Scattering of a surface wave by a submerged sphere 21 

and 

dE,.. i"(va)"n e_Va ' 
emn = a t~r r = a  = 

(15e) 

f " .  = a"F".. (15f) 

Eq. (14) is an infinite set of linear algebraic equations for the unknown expansion 
coefficients f,.~ which specify the spatial part ~, of the velocity potential O. Substitution of 
Eqs. (15a)-(15e) transforms this set of equations into the equivalent set 

ov f"xKo~n+l¢+l 
~ ~n  + m)] f " n +  ~" (x + 1)(~c - m)! 

K = 

x (n + x)! + 2/~ +~+1 e - P ( n i -  ~-(~)) + j_Z ° = -im(efl)"e -~/2 

for O<_m<n,  n = 0 , 1 , 2 , . . .  

where e -- a/(2d) and fl = 2vd. 
The spatial part of the velocity potential is expressed in terms of the f,,, as 

(16) 

I ( r ) "  ( n ) ( a ) " + l ? "  
~u(r, O, ~0) = ~,e , .  a + ~ n - ~ i - J \ r J  . cos m~oP~'(cos 0). (17) 

The equation of the surface r/is expressed in terms of ~u by 

r l (x ' y ' t )=  g Ot ( x , y , d , t ) = R e  e- i °"~(x ,y ,d)  

co 
= - -  [sin cotqf(x, y, d) - cos cot~,~(x, y, d)], (18) 

g 

where g '  and gi are the real and imaginary part of g, respectively. 
For the cross section calculations in Section 4 we shall require the asymptotic behavior at 

large distances from the obstacle, but at moderate depths, of the scattered part of the 
velocity potential, ~u s = ~ - ~ui. This has been evaluated in Appendix B, with the result 

(vat  + nf. .  
~l'ls "~ (8n/rP)½eV(z- 2d)eivpeilt/4 • emi-" (n - m)! (n + 1) cos m~0, (19) 

m , / 1  

where p = ( x  2 -~- y2)½. 

4. Cross-section calculations: exact and Born approximation 

We adopt the usual definition for the total scattering cross section, a, of the obstacle, but 
adapted to a surface wave, namely, 

a = Ps/Ii, (20) 
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22 E. P. Gray 

where P~ is the total power in the scattered wave and I i is the intensity (power per unit length 
along the wavefront) of the incident wave. The intensity can be obtained by evaluating 

I ~ = f  d_ ~ (p,v~)dz, (21) 

where p~ is the component of pressure at radian frequency ~o for the incident wave, v; is the 
horizontal component of the fluid particle velocity for that wave, and the brackets ( ) 
denote the time average. These quantities can both be expressed in terms of the velocity 
potential ~ui: 

and 

Pi = Re ( - loops% e- ~") (22) 

(23) 

where Pl is the fluid density. The scattered power is similarly given by 

P~ = p d~o (p~v~>dz, (24) 
- - 0 0  

with 

p~ R e ( - "  -i,ot = togpr~e ) (25) 

and 

v~ = R e  - ~ e - i . , t  . ( 2 6 )  

For lossless wave propagation, P~ is of course independent of p, and may therefore be 
evaluated in the asymptotic region, i.e., for large p. Using the asymptotic approximation, 
Eq. (19), for g~ gives for the cross section 

27~ oo 
tr = e -4~n ~ cm[Am[ 2, (27) 

11 m = 0  

where the A m are proportional to the Fourier expansion coefficients of the asymptotic form 
for ~u~ evaluated at the surface, and are defined by 

eiVO oo 
,,~ e -2~ (28) ~,s(surf) ~ ~_, emA m cos m~0. 

m = 0  

They are therefore given by 

(va).+ ' nL.. 
Am = (8~z) ~i-"e~/4 Z (n - m)! (n + 1)' 

n = r t l  

(29) 
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Scatterin9 of  a surface wave by a submerged sphere 23 

where we have set f,,, = e-Vaf~,, in order to display explicitly the exponential e -~a 
dependence introduced into the f,,, by the factor e -~/2 on the right-hand side of Eq. (16). 

It is instructive to calculate the Born approximation to the scattering cross section, a s . 
This is defined as 

a B = PB/Ii, (30) 

where P~ is defined as in Eqs. (24~(26), but with the exact scattered part of the velocity 
potential, ~u~, replaced by the Born approximation, ~uff, given by 

~ ( r )  = 1/47r f~ ~i(r')V'G(r, r')" n'd2s '. (31) 

This is similar to Eq. (4), but with ~u replaced by ~ui in the integrand. Such an approximation 
should be useful when the velocity potential on the surface of the sphere is not greatly 
modified by the scattering process, as happens when the sphere is not too close to the 
surface. 

Only the asymptotic form of ~u~ is needed for the cross section calculation, and this has 
been calculated in Appendix B, with the result 

(///s)asymp = (8n/vp)½e v~- aa)eivpein/4(va) 2 cos -~° tl' 2va cos ~-q~ , (32) 

where i 1 is the modified spherical Bessel function of the first kind of order 1, which can be 
expressed in terms of elementary functions, 

i 1 (X) ---- (zt/2x)~I~(x) = - -  
cosh x sinh x 

X X 2 
; (33) 

here I~ is the modified Bessel function of the first kind of order 3. The Born approximation 
to the normalized cross section is then given in terms of this asymptotic form as 

a n vfl  

2a a f d  dz I ~s)asympl ~" fd n( B 2 d (34) 

This integral has been calculated in Appendix C, with the result 

a8 = n2e-4~d{va[Io(4Va) + 1] -- Ii(4va) }. 
2a 

(35) 

Fig. 2 shows plots ofa/2a and a J 2 a  as functions ofva, for two values of the parameter d/a. 
For the more shallow sphere, with d/a = 1.5, the Born approximation gives a better estimate 
of the maximum value of the cross section, but somewhat poorer estimates of the location of 
that maximum and of the width of the curve. 

These same plots for a are given in Fig. 3 on a semi-log scale, to show that there are some 
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%d/a = 2 Exact 
~ \ - -  - - ~  Born approximation 
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' , , 
t ~ d d / a  = 1 . 5 ~  N .  

1 2 3 
va 

Figure 2. Exact normalized scattering cross section and Born approximation vs. va. 
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Figure 3. Exact normalized cross section vs. va. 

secondary peaks for larger values of va. These occur because the various partial cross 
sections, at,, 

2~ 
or,, = e-4V%m IA,,I2 (36) 

v 

have diffraction sidelobes for large va. This is illustrated in Figs. 4a and 4b, which give plots 
of the first four normalized partial cross sections, a,,/2a, m = 0, 1, 2, 3. Note  that the 
diffraction structure is greatly attenuated as compared with such structure in more familiar 
scattering problems such as Mie scattering of electromagnetic or scalar waves by a sphere. 
This point is further elucidated in Section 6. 

5. Application of the Optical Theorem 

How many terms are needed in Eq. (27) for an accurate cross section calculation can be 
determined by applying the well-known "Optical Theorem" (I-12]). This theorem is a 
mathematical expression of energy conservation in a scattering process. It states, in effect, 
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Figure 4a. Exact normalized partial cross sections vs. va for m = 0, 1. 
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Figure 4b. Exact normalized partial cross sections vs. va for m = 2, 3. 

that in such a process the energy flux of the incident wave is reduced by precisely that 

amount of energy which appears in the scattered wave when integrated over all scattering 
angles. 

The form of this theorem applicable to the scattering of a surface wave is most easily 
derived by using Eqs. (24)-(26) to express the energy flux as proportional to the quantity 

S = i(~u*V~, - ~uV~,*). (37) 

By use of Green's theorem and the Laplace equation, Eq. (3a), satisfied by ~u, the power P~ 
leaving any volume v through its surface s can be shown to vanish: 

P~ oc ~sS " i.ds = i ~s (~u*V~u - ~u V~u*) " nds 

= i Iv ( ~ ¢ * V 2 ~ / /  - -  ~ V 2 1 / / * ) d v  = O, (38) 

where n is the unit outward normal to s. If one expresses ~u as a sum of incident and scattered 
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26 E. P. Gray 

velocity potentials, ~ = ~ + ~u~, this integral breaks up into four terms: 

Fii -[- Fis + Fsi + F~ = 0, (39) 

with the F's defined as 

Fpq = i ~ (v/*V~,q - ~,pV~,*). ads, (40) 

where p and q can each be either "i" or "s". 
It is convenient to take v to be a vertical circular cylinder of radius p ~ a, with its axis 

passing through the origin, and extending from the fluid surface to infinite depth. The 
integrals over the top and bot tom surfaces of this cylinder clearly vanish. By using Eq. (5) for 
~ui and the asymptotic form, Eq. (19), for ~ ,  the lateral integral is evaluated in Appendix D, 
where it is shown that 

and 

F,  --- 0, (41a) 

oo 

Fis + F~i "~ 2(2n)½ e -2va ~ e m Re(Amei~/4), (41b) 
V ra=O 

27~ o0 
F ~ s " - - - e  -4~d ~ emlAml 2. (41c) 

V m = 0  

Substitution into Eq. (39) then results in the Optical Theorem appropriate to surface-wave 
scattering, 

ot~ oo 

~, emlAm[ 2= - (2 /n)*e  2~d ~ e,,Re(Amei~/4), (42) 
m = O  m = O  

or equivalently, in terms of the scattering cross section, a, 

(8re)½ e -2~d ~ e m Re(Amei~/4). (43) O" ~ - - - -  

V m=0 

To determine how many expansion coefficients, A~, are needed for an accurate cross 
section calculation, one may use Eq. (42) as a test. One must employ enough coefficients so 
that the finite-sum approximations to the two sides of that equation differ by less than the 
amount prescribed by the desired accuracy. 

6. Discussion 

One of the most striking characteristics of the cross section for the scattering of a surface 
wave by a submerged sphere is its essentially single-peak shape as a function of va, 
illustrated in Figs. 2 and 3. This is in sharp contrast to the well-known oscillatory structure 
of the cross section for Mie scattering of electromagnetic or scalar waves by a sphere [13"1. 
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Scattering of  a surface wave by a submerged sphere 27 

The reason that these oscillations are largely washed out in the case of surface wave 
scattering lies in the exponential decay of these waves with depth. If this decay were omitted 
from the calculation of ~ ,  for example - -  i.e., if the factor exp (va cos 0') were absent from 
the integrand of Eq. (B-12) - -  then the hypothetical scattering velocity potential, (~)hyp, 
that such an omission would lead to is given in the Born approximation, asymptotically, by 

~o . . .  2vasin2_ ' [~sn(r)]hyp ,-~ -- (81z/vp) ½ (va) 2 sin ~- e'~/4e'VPj1 (44) 

where Jl is the spherical Bessel function of order 1, expressible in terms of elementary 
functions by 

sin z cos z (45) 
Ja(z) = (zc/2z)½Jl(z) - z 2 z 

The details are provided in Appendix E, where the corresponding normalized scattering 
cross section is also shown to be 

anyph_ = 7rZ{va[Jo(4va) + I] - J~(4va)}. (46) 
2a 

Thus we see that both for the differential scattering cross section and for the total scattering 
cross section for this hypothetical case, the nonoscillatory, modified Bessel functions ix, Io, 
and 11 of Eqs. (32) and (35) are replaced by the oscillatory, ordinary Bessel functions Jl, J0, 
and J1. Thus it is indeed the depth dependence, e v~, of the incident velocity potential, ~ul, 
which largely eliminates the oscillations in the dependence of the scattering cross section on 
va. 

This same depth dependence can also explain the factor e-4Vn in the formula for the cross 
section, Eq. (27). The influence of the surface motion on the submerged sphere is attenuated 
by a factor e-va. The resulting modification of the surface due to interaction of the sphere 
with this attenuated wave is further attenuated by another factor e-~d. Thus ~ should be 
proportional to e-2~a, and the cross section, which involves the integral of I~12, to e -4~d. 

It is interesting to estimate the position of the peak in the curve of the Born approxi- 
mation scattering cross section, aB, as a function of va. This is accomplished by estimating 
the value of x which maximizes the function 

f ( x )  = e - ~ [ x l o ( x )  - 411(x ) + x], (47) 

where x = 4va and y = d/a. A power series expansion of the quantity in brackets yields 

xSe-r~ o0 (x/2)2. 

f ( x )  - 1 ~  .~=o (n + 2)(n + 3)! n! '  (48) 

If the second term of this series is small compared to the first, i.e., for x ~ 5 (or va ~ 1.25), 
this function has its maximum when x = 5/?. In other words, so long as d/a >> 1, the 
maximum of the Born approximation occurs approximately at va = 1.25a/d. For one of the 
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cases shown in Fig. 2, namely d/a = 2, this approximation places the maximum at va = 
= 0.625, very close to its actual value of 0.68. If d/a > 2, the agreement will be even closer. 
Thus this approximation for the location of the peak of the Born approximation is excellent 
whenever the Born approximation itself is valid. 
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Appendix A. Expansion in spherical harmonics 

We shall expand all the terms of the Green's function, Eq. (7), as well as the incident surface 
wave ~u~, Eq. (5), in spherical harmonics with respect to the center of the spherical obstacle. 

i) The expansion of 1~It - r'l is well known [14], 

I =Eem(n-m)! (r'<)" 
I r - r ' l  ( ~  (r,>),+l P~,(cosO)PT(cosO')cosm(~o-~o' ) ,  (A-l) ~,. m)! 

where (0, ~0) and (0', ~0') are the angular spherical coordinates Of r and r', respectively, 

1 if m = 0  
e~ = 2 otherwise, 

oO oO 

r'< = rain(r, r'), r> = max(r, r'), and the summation ]~ denotes ~ ~ .  
m,n m=O n=m 

ii) Since ~u~ = e ~('- d)+ i~x has the form of a plane wave, but with its component of the wave 
vector in the z-direction pure imaginary, we shall obtain its expansion from the well known 
spherical harmonic expansion of the plane wave [15], 

(n - m)! P~(cos 0)P~(cos ct) cos m(q~ - fl)j .(kr) (A-2) e't¢" = E em(2n + 1)i" ~ :  
m)! 

m , n  

where k = (k, ~t, fl) in spherical coordinates, and j . ( z )  = (n/2z)½J.+~(z) is the spherical 
Bessel function of order n. 

In order that e i*'" be proportional to ~ui, the cartesian components of k must have the 
values 

and 

k~ = k sin ~ cos fl = v, 

ky = k sin ~t sin fl = 0, 

(A-3a) 

(A-3b) 

k~ = k cos a = - iv. (A-3c) 
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Scattering of  a surface wave by a submerged sphere 29 

Eqs. (A-3a) and (A-3b) require that fl = 0, so that k and a are determined from 

k sin ct = v, k cos a = - iv. (A-4a, b) 

But these equations are inconsistent for real a, since they require that 

k 2 sin 2 ct + k 2 C O S  2 0~ = k 2 = 0, 

which can only occur if sin ~ and cos a are infinite. We must therefore resort to a limiting 

procedure. 
To that end, we shall express the arguments of P~' and j ,  in terms of v and k z = k cos a. 

Eventually we shall let kz ~ - i v .  We define ~ = (1 + v2/k2) -~, so that k = kz/~. Then the 

required limit is lim~. ~ e~'( ( ) j~(-  ivr/~). 
Note that for real ct, the associated Legendre polynomial PT(cos a) in Eq. (A-2), from 

which the factor P~'(~) in the above limit arises, has an argument between - 1 and + 1. It is 
therefore defined in the usual way [15] as 

d m 
P~(cos a) = ( -  sin a)m d(cos ct) m P~(cos c0. (A-5a) 

Thus P7(~) must be defined as 

p m(~) = ( _  1)/(1 _ ~2)m/2 dm 
d ~ -  P"(~)' (A-5b) 

which differs by a factor i m from the usual definition for associated Legendre polynomials 
with an argument greater than 1 [16]. This factor must be inserted in the tabulated 
asymptotic limit [17]. Thus we have for large ~, 

im(2~)nF(n + ½) (A-6) 
eT(~) "~ n~(n - m)! 

Using the first term in the series expansion ofj~(z) [18], 

z n 

Jr(z) "~ (2n + 1)!! ' (A-7) 

where (2n + 1)!! = (2n + 1)(2n - 1) . . .3  x 1, we obtain for the limit 

lim P:(~)j~ ( - - - i ~ r )  = i~-~(vr) ~ (A-8) 
¢400 (2n + 1)(n - m)! ' 

which leads to 

gmirn (v r )  n 

~'i = eVtz-a~+ivx = e-Va y~ (m + n)! 
m , n  

cos mtpP~'(cos 0). (A-9) 
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iii) For an expansion of 1/Ir - r"l we start with a formula like Eq. (A-l), 

1 ( n -  m)! (r'~)" P~(cos o)pm(cos O")cos m(~p- (p'), (A-IO) 
I r - r" l  = ~e , .  (n+m)!  (r~.) "+1 

ttl, tt 

where r" = min(r, r"), r'~ = max(r, r"), and (r", 0", ~') are the spherical coordinates of r" 
(see Fig. 1). Since both P and P' will eventually lie on the surface of the submerged sphere 

tt  ~ t! ~ r p t ,  when evaluating (~2G/~rt~r')r=r,=a in Eq. (9), we have r< r and r> To facilitate the 
0'-integration in Eq. (9), we will now express P~(cos O")/(r") n+l in terms of 0' and r'. 

m t t n + l  i To that end, we note that this quantity is also equal to P,  [cos (re - O~)]/(r~) (where r 1 
is the vector from 0~, the reflection of 0, to P'), which is the irregular solid spherical 
harmonic with respect to a center displaced by 2d from 0. The transformation of such 
harmonics has been accomplished by Steinborn and Ruedenberg [19]. They find that, for 
r' < 2d, 

o~ (n+K)! f r l " ~ " + l / r ' \ ~  ,. 
P'~[cos(rc--O'i)]=<~=m(n_m)!(K+m)!\~/#,. ~ - ~ )  P< (cos 0 ),' (A-11) 

which leads to the required result, 

I r - r " l  = : T ,  ~ e ~  za . . . . .  ( n + m ) ! ( x  +m)! PT(cosO)PT(cosO') 

x cos m(tp - tp') (A-12) 

for the desired case for which r' < d, where the triple summation ~ denotes ~ ~ ~ .  
r,m,n m=O n=m K=m 

iv) To obtain the expansion coefficients Am, ~ in the spherical harmonic expansion of 
2~ iv e ~ ÷ ~' - 2a) Jo (vR ), 

2rdve ~tz+~'-2d)J0(vR) = Z emAm,~P'~(cos 0)Pro(COS 0') COS m(cp -- ~0'), (A-13) 
K , m , n  

where R = [(x - x') 2 + (y - y,)2]½, we express z and z' in spherical polar coordinates, 
substitute for Jo(vR) the addition theorem expansion, 

o0 

Jo(vR) = ~. emJm(vr sin O)Jm(vr' sin 0') cos m(~ - ~'), (A-14) 
m = 0  

multiply the resulting equation by 

P~'(cos 0)P~(cos 0') sin 0 sin 0' cos ptp cos q~p', 

and integrate the expression over tp and tp' from 0 to 2n and over 0 and 0' from 0 to n. 
Remembering the orthogonality of the trigonometric functions and of the associated 
Legendre polynomials, as well as their normalization integrals, 
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~ [p~,(cosO)]2 sin OdO = ( 2 ~ . l  ) (l +_ m), 
(l m)! ' 

we obtain for the expansion coefficients 

Am.~ 1 • - 2va (2n + l )(2K + l )(n -- m)! (K -- m)! 
= 2mve  (n + m)! (K + m)! 

t ~ e . . . .  ~°J~(vr sin 0)P~(cos 0) sin OdO x 
Jo 

31 

(A-15) 

f~e  vr'c°s0" vr' x Jm( sin 0')P~(cos 0')sin 0'd0'. (A-16) 

The remaining integrals can be evaluated from a form of Gegcnbauer's finite integral, 
namely [20] 

I ~  ikrcosOcosCt " " m e Jm(kr sm 0 sm a)P, (cos 0) sin OdO = 2i"-" P~(cos ~)j,(kr). (A-17) 

To obtain the integrals in Eq. (A-16) from this equation requires setting 

k s i n a = v ,  k c o s a = - i v ,  (A-18a, b) 

the same as in Eqs. (A-4) The same limiting procedure must therefore be used. The result is 

f~ .. . .  s0 2(vr)" (A-19) e J~(vr sin 0)P~(cos 0) sin OdO = (n - m)! (2n + 1)' 

which leads to the value for the expansion coefficients 

27rive- 2Vd(vr)"(vr') ~ 
A.,.~ = (m + n)! (m + to)! (A-20) 

v) To obtain the expansion coefficients B.,.~ in the spherical harmonic expansion 

2v - ~  e k~z+z'- 2a) J°(kR) dk 
30 k - v  

= ,. p,. emB,..~P . (cos 0) ~(cos 0') cos m(~0 - ~0'), (A-21) 
m,n,K 

we multiply by P~(cos 0)P~(cos 0') sin 0 sin O' cos pC cos q~' and integrate over ~ and ~0' 
from 0 to 2~, and over 0 and 0' from 0 to ~z, with the result 

2v(-1)mr"r '~ ~ e -2kd k.+~dk" 
Bm"~ = (m + n)! (m + ~:)! 3 0  k - -  v 

(A-22) 
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The integral in Eq. (A-22) can be expressed in terms of derivatives of the exponential 
integral, 

e-2kdk--v k"+~dk = ( - v ) " + ' + l  Op "+" [e-PEi--~)]P=2vd' (A-23) 

with 

The 

Ei-(p) defined as 

; c~ e-t 
E-{(p) = - dt for p > 0. 

p t 

derivatives can be evaluated as 

c3z (_  1)l Ie-p~-(p ) t~l J . ' ~ l  1 
a p '  [ e - P E - ] - ( P ) ]  = - y=o If _]" 

Thus the final resu}t is 

(A-24) 

(A-25) 

2v(_l),.+l(vr).(vr,)~ I .+~-1 J! l 
Bm"~= (m + n)! (m + x)! e-2Vd~(2vd)-- s=o~ (2v~-)j+f . (A-26) 

Appendix B. Asymptotic expansion of scattered velocity potential and of its Born 
approximation 

The scattered velocity potential, ~ = ~u - ~ / i s  written in terms of the Green's function G 
and the total velocity potential ~,, from Eq. (4), 

~Us(r ) = 1/4n fs ~(r')V'G(r, r')" n'd2s '. (B-l) 

To obtain the asymptotic form for ~s, therefore, requires the asymptotic form of G(r, r') for r 
--, oo and r' = a. Thus 

a2~2~ f l  [~-f~ r 1 ~ G ( r ) ~ - J  ° d~' ~u(a,O', ~') G(r,r') sinO'dO'. 
J r '  ~ a , r ~  oo 

(B-2) 

To obtain the asymptotic limit of G, we rewrite it as I11] 

1 1 4v 
G ( r ,  r ' )  = - -  + - -  

Ir - r'l Ir - r"l 

x f o  {v cos[k(2d - z - z')] + k sin[k(2d - z - z')]} 

Ko(kR) x k2 + v-------- T d k  + 27tive-~(2d-z-Z')H(ol)(vR), (B-3) 
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where K o is the modified Bessel function of the second kind of order zero and H~01) is the 
Hankel function of the first kind of order zero. The leading term in the asymptotic 
expansion of this expression for large r but finite r' comes from the last term, so that 

G(r, r') ,,, 2nive-V(2d-z-z')e"~R-~'~)(2/nvR)½[1 + 0(l/R)], (B-4) 

as terms of order 1/R from the first three terms of Eq. (B-3) cancel. 
In order to evaluate OG/t3r', Eq. (B-4) must first be expressed in spherical coordinates of 

the "primed" variables. The leading terms for large r in OG/t3r' arise from differentiating the 
exponentials, so that 

~ r '  (r, r')]~,=, 2niv2(2/nvp)&e-v(2a-z-ae°s°')elVIrsin°-asin°'e°s(u'-~°')]e-iX/4 

x [cos 0' - i sin 0 sin 0' cos(~o - ~o')]. (B-5) 

Replacing q/in Eq. (B-2) by its spherical harmonic form of Eq. (17), enables us to write the 
asymptotic limit for ~G as 

_ { 2 n + l ' ~  O V~(r)~ei~/4(va)Ze-V(2a-z'(2nvd) -~ei~° Z e j m . [ ~ J  
O(va) tn ,n  

x dq~' cos m~' dO' sin 0'P~'(cos O')e ~at¢°~°'-i~i"°'¢°~¢~-'p')J (B-6) 

since for r ~ ~ but z finite - -  the desired asymptotic regime - -  0 ~ n/2. 
The ~0'-integral is easily evaluated, 

f ~  e-ivasinO' ¢os(¢~'-9) COS m~o' d~o' = 2ni-mJm(va sin 0')cos m~0, 

leaving us with 

/ ~ 2 n +  1 
~ Z ".fm.i m I - - I  c o s  

m,. \ n + 1 ] O(va) 

× t"dO' sin 0'P~(cos O')Jm(va sin 0')e o'. 
do 

(B-7) 

(B-8) 

But this contains the same integral as has been evaluated in Eq. (A-19), so that we obtain 
finally for the desired asymptotic limit of the scattered velocity potential 

~s(r) ~ (8n/vP) ½e-v(2n-z)elvpei~/4 Z emfm. 
m , n  

i-,.n(va) .+1 
(n+ 1)(n-m)!  cos mq. (B-9) 

The Born approximation, ~uff, is defined by an equation similar to Eq. (B-l), but with q/(r') 
replaced by ~ti(r'), i.e., 

¢G (r) = 1/4n ~/i(r')V'G(r, r')'n'd2s '. (B-10) 
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Using the spherical harmonic expansion of ~u i, Eqs. (10e) and (1 le), 

im(vr')" P~(cos 0') cos m~0', ~ui(r') = e- 'a  E em (m + n)! m,n 
(B-11) 

and the asymptotic form of Eq. (B-5) for [-0G(, r )/Or ],, =,, we have for the asymptotic form 
of q/~ an expression similar to Eq. (B-6), 

i"(va)" 
~,~(r) ei~/4 ( va )2 e - vt 3d - z) ( 2~zvd) - ~ e~Vp 

~,, e., (m + n)l O(va) 

x d~o' cos m~o' dO' sin 0'P~(cos O')C *°~°' -i~i.O'~o~-¢)}. (B-12) 

The integrals have already been evaluated in Eqs. (B-7) and (A-19), so that we obtain 

n(va) 2n+l 
~tB ~ ei"/4e-~aa-~)(8n/vp)~e i~p y'  e~ cos m~ (2n + 1)(n - m)! (n + m)!" 

m , n  

(B-13) 

The sums can be evaluated in closed form. We sum first over n, 

ntva~2., ! + 1 
Z (2n + 1 ) ( n -  m)l(n + m)!" 

n = F t l  

We define 

oo / , / x 2 n +  1 

R,~(x)= E ( 2 n + l ) ( n - m ) I ( n + m ) ! "  
n m m  

(B-14) 

Differentiating, dividing by x, and integrating the result from 0 to x gives, for m > 0, 

f ~ d~ oo x2n 
R ' ( t )  = ½ ~" (n - m)l (n + m)!" (B-15) 

i1 = rtl 

For m = 0, a similar procedure yields 

f~ ) ~ -  ~ x2. Ro(t = ½ E 
.=1 (n!) 2" 

(B-16) 

The sums in Eqs. (B-15) and (B-16) can be expressed in terms of the modified Bessel 
function Ip(z), which has a series expansion 

(z/2)2'+P (B-17) 
Iv (z )= ~" llF(l + p + 1)" 

/ = 0  

Thus Eq. (B-16) becomes directly 

Ro(t ) = ½[Io(2X) - 1]. (B-18) 
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To evaluate the sum in Eq. (B-15), we set l = n - m, with the result 

fi : dt ½iZm(2X) for 0. R" (t) - t  m > 

Differentiating Eqs. (B-18) and (B-19) yields 

. I  ~ R',,(x) = x 2m(2x) for all m. 

R.,(x) can be expressed in terms of I2m(x) by means of an integration by parts, 

x ¼fl e~(x)  = ~- Iam(2x) - I2m(t)dt. 

Thus the asymptotic form for ~,f reduces to 

q/n~ (r ) ~ ei~/4 e - V(3d- ~) eivo ( 2n /v p )½ 

x Vayoe , f l zm(2Va)cosm~o-½jo  5oe , f l zm( t )cosm( ,od t .  

The sum over m can also be evaluated in closed form [21], 

~ emIz~(p) cos me = cosh p cos . 
m = 0  

The integral can now be evaluated trivially, so that we have, finally, 

B Us (r) ,.. e i~/4 e-  v(3a - Z)e ivo (2zc/vp)~ 

x l v a c ° s h ( 2 v a c ° s ~ ) - s i n h ( 2 v a  c°s 2 ) - ]  ' 2  cos ~- 

or, in terms of the modified spherical Bessel function defined in Eq. (33) 

~tBs(r),,~ei~/4e-Vt3a-z)(8n/vp)~(va)2eiVOcos~il(2vacos~). 

35 

(B-19) 

(B-20) 

(B-21) 

(B-22) 

(B-23) 

(B-24) 

(B-25) 

Appendix C. Born approximation to the scattering cross section 

We wish to calculate the Born approximation to the scattering cross section 

f f? t7 B 2vp dz B 2 = [(~//s )asymp[ d~0, (C-1) 
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where a (~s)asymo is the asymptotic form of the Born approximation to the scattered velocity 
potential given in Eqs. (B-24) and (B-25). The z-integral is trivial. The ~0-integral requires the 
evaluation of 

f : ~ [ c  ( ) sinh ( 2 c ° s  2 )  1 2 

 -C°ST 

with 7 = 4va. Changing the integration variable to t = cos ½ ~ and using the double angle 
formulas for hyperbolic functions reduces K to 

I~ cosh ~,t 
K(y) = 2 ( -~ -~½ dt + 

f~ 8 f l  sinh Tt 8 (cosh yt - 1) - 7 tO Z ~-)½ + ~ -  ~ - ~-)f dt dt + n. (C-3) 

The integrals can all be evaluated with the aid of the well-known integral representation 
for Io(y) [22], 

2 .fo L cosh yt 
I°(Y) = ~- (i :-yT~½ dt. (C-4) 

u 

For example, if we let 

f] sinh ?t 
5(y)  = t(l : ~)* dt, (C-5) 

then 

zt I 3-'(7) = ~- o(Y), (C-6) 

and 

~-(Y) = ~- Io(t)dt. (C-7) 

Similarly, if we set 

f~ (cosh yt - 1) 
~(Y) = t ~  - ~)~ at, (C-8) 

then 

~-q"(~) = 5(7) = ~- Io(t)dt, (C-9) 

and 

.~P(y) = ~ Io(t)dt. (C-10) 
do dO 
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Changing the order of integration results in 

~ ( 7 )  = ~-  Io(t)dt dv = -~  (~ - t)Io(t)d t. 

The second integral can be evaluated in closed form, 

2 tlo(t) d t =  Yls(?), 

so that the expression for ~ becomes 

= zr7 I1 (7)]" ~e(e) T[f~lo(t)dt- 

37 

(C-11) 

(C-12) 

(C-13) 

Substituting Eqs. (C-7) and (C-13) in (C-3), we note that the terms involving ~ l o ( t ) d t  
cancel, and that 

K(7)= ~r[1 + Io(~,) - 4  I~(7)] - -  , ,(C-14) 

Substituting in Eq. (C-I) gives, finally, for the Born approximation to the normalized cross 
section 

CrB = ~z2e-4~d{va[Io(4Va) + 1] -- II(4va)}. 
2a 

(C-lS) 

Appendix D. Calculation of the F's 

In evaluating Fii , Fis, Fsi and Fs,, defined by Eq. (40), we use for ~u~ the plane wave of Eq. (5), 
as well as its expansion in polar coordinates, 

c o  

~u i = e v(~-d)+ivx = e v(~-d) ~, imelm*Jm(vP), (D-l) 
m =  - c o  

and for ~u,, the asymptotic form of Eq. (B-9), 

with 

eivp co  

e v(z-3a) ~ Am eira~°, (D-2) 
~s ~ ( . d e ) ½  m = -co 

co (va)n+ lnflraln 
Am = (8~z)½i-lmlei~r/4 ~ (n + 1)(n - Iml)! ' 

n=lm[ 

andfm. = vd e ~Cm,. The integral over the lateral surface can be written as 

(D-3) 

~ ... ds p f ]  co... dz ... dtp. (D-4) 
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The z-dependence of all terms comprising the F's is e z~z, so that the integral over z yields 
eZ~a/2v. The quantity F ,  is easily shown to vanish, using 

~ . ---- ~eV(Z-d)+ivx, Vq/~" i. = ~"  ip iv cos (D-5) 

so that 

f0 2~ F u = - p cos q~ d ~o = 0. (D-6) 

For F~ we have by straight-forward substitution, and carrying out the integration over ~0, 

Fis ~ - - - v  e-Z~a m =Z- ~ {A, , [ ( -  1)"e- i"/4e2i~° + ei~/4] + c.c.}, (D-7) 

where c.c. denotes the complex conjugate. Similarly, 

1 n ~e -2~a ~ 1) ' e - i~ /4e  2i~p e i"/4] c.c.}. 
F~i ~ v (2 - )  "=-°~ {Am[(- - + (D-8) 

In the sum Fi,.+ F,i, therefore, the p-dependent terms cancel, and we are left with 

Fi, + F~i (2n)½ e -2vd ~ (Am ein/4 + c.c.) 
r 

ct3 
2(2n)½ e -2va Y'~ e, ra Re(A.,ei~/4).  (D-9) 

Y m=O 

The calculation of Fss proceeds in the same way, with the result 

Fs~ e -*vd Z emlAm] z. (D-10) 
Y m=O 

Appendix E. Born approximation without attenuation with depth 

We wish to calculate the Born approximation to the hypothetical velocity potential and the 
associated scatterings cross section of a submerged sphere in the absence of the attenuating 
factor e vz for the surface wave, i.e., 

~s rt ' [~( r ) ]hy  p = 1/4n 7ti( )V Ghyp( ,r r ' ) ' n ' d 2 s  

where ~i(r') = e i~x' = e i~"sin°'c°s~' and 

Ghyp(r, r') ~ 2niv H~ol)(vR ) ,,~ 2niv( 2 / n v R  ) ½ e "~R -"/41. 

(E-l) 

(E-2) 
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Expanding  R for p >> a and differentiating, yields 

I OGhyv(r, r ')] ~ 2nv2(2/nvp)~e-i~/4ei~P sin 0 sin 0' cos (~o -- ~o') 
ar' J~,=o 

× e -ivasinO'e°s(~°-~°') (E-3) 

so that  in the asympto t ic  regime where 0 ~ n/2 we have 

;; I/ [ ~ ( r ) ] h y  p ~ (2nvp)-~(va)2e-i~/4ei~O d~o' cos(~o - ~0') dO' sin 2 0' 

X e ivasinO'[c°scp'-c°s((°-'°')] 

= (2nvp)-½(va)Ee-i~/% i~° d~o' cos(~0 - ~') dO' sin 2 0' 

x e -  2i~a sin 0' sin ½e sin(~' - ½~o~. ( E - 4 )  

The ~0'-integral is readily evaluated,  

f]~ cos(q~' - ~o)d~0' 
e -  2ivasinO' sin~z~osin(~o' 

= - 2 n i s i n ~ J ~ ( 2 v a s i n O ' s i n ~ ) .  (E-5) 

Fo r  the 0'-integral,  we employ  Sonine's first integral [23], 

ff 2 2~F(v + 1) 
Ju(z sin 0') sin ~ + 10' cos 2~ + 10'd0'  - z~+ 1 Ju + ~ + 1(z). (E-6) 

Setting p = 1 and v = -½ ,  we obtain 

['~/B(r)']hyp ~-n(2/vp)½(va)~(sin ~)C~/ 'e '~OJ,(2vas in  ~ ) ,  (E-7) 

or, in terms of the spherical Bessel function, 

sin z cos z 
- - ,  (E-8) Jl(z) = (n/2z)½Jk(z) = z 2 z 

The hypothet ical  scattering cross section corresponding to this velocity potent ia l  is given 
by 

fl rt B 2 o'hyp = P [ ( ~  )hypl d~, (E-IO) 
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which requires  the eva lua t ion  of  

I c ( ~  ~ - ]  sin ! 2 

s n ~ 2 - s l n 2 ) [  dq~. (E-11) 
M(7) os s i n _ -  

Chang ing  var iables  to X = ~0 - n, and  uti l izing the per iodic i ty  of  the in tegrand  to rewri te  
d r2nd ~-~ Z as Jo X, we note  tha t  this integral  is the same as K(iT) [See Eq. (C-2)]. Thus  we have 

M ( 7 ) =  n i l  + J o ( 7 ) -  4 J 1 ( ) ' ) ]  (E-12) 

and  

~YP = 2anE{vaEJo(4Va) + 1] - Jl(4va)}.  

E. P. Gray 

(E-13) 
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